Mono-arginine Cholesterol-based Small Lipid Nanoparticles as a Systemic siRNA Delivery Platform for Effective Cancer Therapy
نویسندگان
چکیده
Although efforts have been made to develop a platform carrier for the delivery of RNAi therapeutics, systemic delivery of siRNA has shown only limited success in cancer therapy. Cationic lipid-based nanoparticles have been widely used for this purpose, but their toxicity and undesired liver uptake after systemic injection owing to their cationic surfaces have hampered further clinical translation. This study describes the development of neutral, small lipid nanoparticles (SLNPs) made of a nontoxic cationic cholesterol derivative, as a suitable carrier of systemic siRNA to treat cancers. The cationic cholesterol derivative, mono arginine-cholesterol (MA-Chol), was synthesized by directly attaching an arginine moiety to cholesterol via a cleavable ester bond. siRNA-loaded SLNPs (siRNA@SLNPs) were prepared using MA-Chol and a neutral helper lipid, dioleoyl phosphatidylethanolamine (DOPE), as major components and a small amount of PEGylated phospholipid mixed with siRNA. The resulting nanoparticles were less than ~50 nm in diameter with neutral zeta potential and much lower toxicity than typical cationic cholesterol (DC-Chol)-based lipid nanoparticles. SLNPs loaded with siRNA against kinesin spindle protein (siKSP@SLNPs) exhibited a high level of target gene knockdown in various cancer cell lines, as shown by measurement of KSP mRNA and cell death assays. Furthermore, systemic injection of siKSP@SLNPs into prostate tumor-bearing mice resulted in preferential accumulation of the delivered siRNA at the tumor site and significant inhibition of tumor growth, with little apparent toxicity, as shown by body weight measurements. These results suggest that these SLNPs may provide a systemic delivery platform for RNAi-based cancer therapy.
منابع مشابه
Nanolipoparticles-mediated MDR1 siRNA delivery reduces doxorubicin resistance in breast cancer cells and silences MDR1 expression in xenograft model of human breast cancer
Objective(s): P-glycoprotein (P-gp) is an efflux protein, the overexpression of which has been associated with multidrug resistance in various cancers. Although siRNA delivery to reverse P-gp expression may be promising for sensitizing of tumor cells to cytotoxic drugs, the therapeutic use of siRNA requires effective carriers that can deliver siRNA intracellularly with minimal toxicity on targe...
متن کاملLong-circulating siRNA nanoparticles for validating Prohibitin1-targeted non-small cell lung cancer treatment.
RNA interference (RNAi) represents a promising strategy for identification and validation of putative therapeutic targets and for treatment of a myriad of important human diseases including cancer. However, the effective systemic in vivo delivery of small interfering RNA (siRNA) to tumors remains a formidable challenge. Using a robust self-assembly strategy, we develop a unique nanoparticle (NP...
متن کاملTruncated Hepatitis B virus like nanoparticles: A novel drug delivery platform for cancer therapy
Nowadays, Nano-sized drug delivery systems have been studied extensively for theirpotential in cancer therapy. Various drug nanocarriers are being developed including liposomes, micelles, and Virus like nanoparticles (VLNPs). VLNPs offer many advantages for developing smart drug delivery systems due to their precise and repeated structures and relatively large cargo capacities. Truncated ...
متن کاملSynthesis and Formulations of Lipid Aminoglycoside Conjugates: Nanoparticles for Efficient Gene and Sirna Delivery
Objective: To design and evaluate efficient lipid-aminoglycoside conjugates for the delivery of genes for gene therapy, and also for the delivery of siRNA molecules to knock down gene expression in mammalian cells Methods: 3β-[5”-(aminoethanethiol)-neomycin B] carbamoyl cholesterol (NeoChol) was synthesized. The abilities of this novel compound to condense DNA and to form nanoparticles were stu...
متن کاملLayer-by-layer nanoparticles for systemic codelivery of an anticancer drug and siRNA for potential triple-negative breast cancer treatment.
A single nanoparticle platform has been developed through the modular and controlled layer-by-layer process to codeliver siRNA that knocks down a drug-resistance pathway in tumor cells and a chemotherapy drug to challenge a highly aggressive form of triple-negative breast cancer. Layer-by-layer films were formed on nanoparticles by alternately depositing siRNA and poly-l-arginine; a single bila...
متن کامل